skip to main content


Search for: All records

Creators/Authors contains: "Lee, Cheng-Chun"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The objective of this study is to predict road flooding risks based on topographic, hydrologic, and temporal precipitation features using machine learning models. Existing road inundation studies either lack empirical data for model validations or focus mainly on road inundation exposure assessment based on flood maps. This study addresses this limitation by using crowdsourced and fine-grained traffic data as an indicator of road inundation, and topographic, hydrologic, and temporal precipitation features as predictor variables. Two tree-based machine learning models (random forest and AdaBoost) were then tested and trained for predicting road inundations in the contexts of 2017 Hurricane Harvey and 2019 Tropical Storm Imelda in Harris County, Texas. The findings from Hurricane Harvey indicate that precipitation is the most important feature for predicting road inundation susceptibility, and that topographic features are more critical than hydrologic features for predicting road inundations in both storm cases. The random forest and AdaBoost models had relatively high AUC scores (0.860 and 0.810 for Harvey respectively and 0.790 and 0.720 for Imelda respectively) with the random forest model performing better in both cases. The random forest model showed stable performance for Harvey, while varying significantly for Imelda. This study advances the emerging field of smart flood resilience in terms of predictive flood risk mapping at the road level. In particular, such models could help impacted communities and emergency management agencies develop better preparedness and response strategies with improved situational awareness of road inundation likelihood as an extreme weather event unfolds.

     
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  2. Free, publicly-accessible full text available May 1, 2024
  3. Abstract Aggregated community-scale data could be harnessed to provide insights into the disparate impacts of managed power outages, burst pipes, and food inaccessibility during extreme weather events. During the winter storm that brought historically low temperatures, snow, and ice to the entire state of Texas in February 2021, Texas power-generating plant operators resorted to rolling blackouts to prevent collapse of the power grid when power demand overwhelmed supply. To reveal the disparate impact of managed power outages on vulnerable subpopulations in Harris County, Texas, which encompasses the city of Houston, we collected and analyzed community-scale big data using statistical and trend classification analyses. The results highlight the spatial and temporal patterns of impacts on vulnerable subpopulations in Harris County. The findings show a significant disparity in the extent and duration of power outages experienced by low-income and minority groups, suggesting the existence of inequality in the management and implementation of the power outage. Also, the extent of burst pipes and disrupted food access, as a proxy for storm impact, were more severe for low-income and minority groups. Insights provided by the results could form a basis from which infrastructure operators might enhance social equality during managed service disruptions in such events. The results and findings demonstrate the value of community-scale big data sources for rapid impact assessment in the aftermath of extreme weather events. 
    more » « less
  4. Abstract The objectives of this study are: (1) to specify evacuation return and home-switch stability as two critical milestones of short-term recovery during and in the aftermath of disasters; and (2) to understand the disparities among subpopulations in the duration of these critical recovery milestones. Using privacy-preserving fine-resolution location-based data, we examine evacuation and home move-out rates in Harris County, Texas in the context of the 2017 Hurricane Harvey. For each of the two critical recovery milestones, the results reveal the areas with short- and long-return durations and enable evaluating disparities in evacuation return and home-switch stability patterns. In fact, a shorter duration of critical recovery milestone indicators in flooded areas is not necessarily a positive indication. Shorter evacuation return could be due to barriers to evacuation and shorter home move-out rate return for lower-income residents is associated with living in rental homes. In addition, skewed and non-uniform recovery patterns for both the evacuation return and home-switch stability were observed in all subpopulation groups. All return patterns show a two-phase return progress pattern. The findings could inform disaster managers and public officials to perform recovery monitoring and resource allocation in a more proactive, data-driven, and equitable manner. 
    more » « less
  5. Abstract

    Smart resilience is the beneficial result of the collision course of the fields of data science and urban resilience to flooding. The objective of this study is to propose and demonstrate a smart flood resilience framework that leverages heterogeneous community-scale big data and infrastructure sensor data to enhance predictive risk monitoring and situational awareness. The smart flood resilience framework focuses on four core capabilities that could be augmented by the use of heterogeneous community-scale big data and analytics techniques: (1) predictive flood risk mapping; (2) automated rapid impact assessment; (3) predictive infrastructure failure prediction and monitoring; and (4) smart situational awareness capabilities. We demonstrate the components of these core capabilities of the smart flood resilience framework in the context of the 2017 Hurricane Harvey in Harris County, Texas. First, we present the use of flood sensors for the prediction of floodwater overflow in channel networks and inundation of co-located road networks. Second, we discuss the use of social media and machine learning techniques for assessing the impacts of floods on communities and sensing emotion signals to examine societal impacts. Third, we describe the use of high-resolution traffic data in network-theoretic models for nowcasting of flood propagation on road networks and the disrupted access to critical facilities, such as hospitals. Fourth, we introduce how location-based and credit card transaction data were used in spatial analyses to proactively evaluate the recovery of communities and the impacts of floods on businesses. These analyses show that the significance of core capabilities of the smart flood resilience framework in helping emergency managers, city planners, public officials, responders, and volunteers to better cope with the impacts of catastrophic flooding events.

     
    more » « less